f'(x) = \lim\limits_{h \rightarrow 0} \frac { [ \frac{(x+h)^2-1}{2(x+h)-3}] - [ \frac{x^2-1}{2x-3}}{h}
f'(x) = \lim\limits_{h \rightarrow 0} \frac { \frac{x^2+2xh+h^2-1}{2x+2h-3} - [ \frac{x^2-1}{2x-3}}{h}
f'(x) = \lim\limits_{h \rightarrow 0} \frac {(2x-3)(x^2+2xh+h^2-1)-[(2x+2x+2h-3)(x^2-1)]}{h(2x-3)(2x+2h-3)}
f'(x) = \lim\limits_{h \rightarrow 0} \frac {2x^3+4x^2h+2xh^2-2x-3x^2-6xh-3h^2+3-[2x^3+2x^2h-3x^2-2x-2h+3]}{h(2x-3)(2x+2h-3)}
f'(x) = \lim\limits_{h \rightarrow 0} \frac {2x^2h+2xh^2-6xh-3h^2+2h}{h(2x-3)(2x+2h-3)}
f'(x) = \lim\limits_{h \rightarrow 0} \frac {h(2x^2+2xh-6x-3h+2)}{h(2x-3)(2x+2h-3)}
f'(x) = \lim\limits_{h \rightarrow 0} \frac {2x^2+2x \cdot 0-6x-3 \cdot 0+2)}{(2x-3)(2x+2 \cdot 0-3)}
f'(x) = \lim\limits_{h \rightarrow 0} \frac {2x^2-6x+2)}{(2x-3)^2}
D(f) = \mathbb {R} - \{ \frac {3}{2} \}
D(f') = \mathbb {R} - \{ \frac {3}{2} \}
Nenhum comentário:
Postar um comentário