f'(1) = \lim\limits_{h \rightarrow 0} \frac { \sqrt{h+1} - 1}{h}
f'(1) = \lim\limits_{h \rightarrow 0} \frac { ( \sqrt{h+1} - 1)}{h} \cdot \frac { ( \sqrt{h+1} + 1)}{( \sqrt{h+1} + 1)}
f'(1) = \lim\limits_{h \rightarrow 0} \frac { h+1+ \sqrt{h+1} - \sqrt{h+1} -1}{h( \sqrt {h+1} +1)}
f'(1) = \lim\limits_{h \rightarrow 0} \frac { h}{h( \sqrt {h+1} +1)}
f'(1) = \lim\limits_{h \rightarrow 0} \frac { 1}{ \sqrt {h+1} +1} = \frac {1}{\sqrt{0+1}+1} = \frac {1}{1+1} = \frac {1}{2}
f'(1) = \frac {y-y0}{x-x0}
f'(1) = \frac {y-y0}{x-x0}
\frac {1}{2} = \frac {y-1}{x-1}
x-1 = 2y-2 \rightarrow x-2y+1 = 0
Nenhum comentário:
Postar um comentário