f'(x) = \lim\limits_{h \rightarrow 0} \frac { 2(t+h)^3 +t+h -(2t^3+t)}{h}
f'(x) = \lim\limits_{h \rightarrow 0} \frac { 2(t^3+3t^2h+3th^2+h^3)+t+h-2t^3-t}{h}
f'(x) = \lim\limits_{h \rightarrow 0} \frac { 2t^3+6t^2h+6th^2+2h^3+t+h-2t^3-t}{h}
f'(x) = \lim\limits_{h \rightarrow 0} \frac { h(6t^2+6th+2h^2+1)}{h}
f'(x) = \lim\limits_{h \rightarrow 0} \ 6t^2+6th+2h^2+1 \ = 6t^2+6t \cdot 0+2 \cdot 0^2+1 \ = 6t^2+1