17. Encontre o limite. $$ \lim\limits_{x \rightarrow \infty} (\sqrt {x^2 + 4x + 1} - x) $$
Resposta: $$ \lim\limits_ {x \rightarrow \infty} [ \frac { \sqrt {x^2 + 4x + 1} - x} {1} * \frac { \sqrt {x^2 + 4x + 1} + x} { \sqrt {x^2 + 4x + 1} + x}] $$
$$ \lim\limits_ {x \rightarrow \infty} \frac {(x^2 + 4x + 1) - x^2} { \sqrt {x^2 + 4x + 1} + x} $$
$$ \lim\limits_ {x \rightarrow \infty} \frac{(4x + 1) / x} {( \sqrt {x^2 + 4x + 1} + x) / x} $$
$$ \lim\limits_ {x \rightarrow \infty} \frac {4 + 1 / x} { \sqrt {1 + 4 / x + 1 / x^2} + 1} $$
$$ \frac {4 + 0} { \sqrt {1 + 0 + 0} + 1} = \frac {4} {2} = 2 $$
Assinar:
Postar comentários (Atom)
(Página 152) Questão 16 - Encontre o limite. $ \lim\limits_{x \rightarrow - \infty} \frac {1-2x^2-x^4 }{5+x-3x^4} $
$$ \lim\limits_{x \rightarrow - \infty} \frac {1-2x^2-x^4 }{5+x-3x4} $$ $$ \lim\limits_{x \rightarrow - \infty} \frac {-x^4 }{-3x^4} $$ $$...
-
Questão 12 São dados os gráficos das funções das posições de dois corredores, A e B, que correm 100 metros rasos e terminam ...
-
(a) Qual o significado da derivada S'(T)? Quais são suas unidades? Solubilidade do oxigênio e temperatura. Temperatura - grau celsius ...
-
13°) Uma pilha recarregável é colocada no carregador. O gráfico mostra C (t), a porcentagem de capacidade total que a pilha alcança conform...
Nenhum comentário:
Postar um comentário